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A method to predict all peaks of the rotation function corresponding to a given molecular crystal is 
formulated in a rigorous mathematical manner. The applicability of this method is shown both in the 
analysis of rotation function data and in testing the validity of model molecular crystals proposed on 
the basis of limited rotation function data. Possible models of crystalline bovine liver catalase are 
determined assuming that all peaks of the rotation function are contained in the set of peaks deter- 
mined by Eventoff and Gurskaya. All peaks of the rotation function corresponding to a model of crys- 
talline satellite tobacco necrosis virus (STNV) proposed by Klug and Akervall et aL are determined 
and tabulated. Experimental determination of all these peaks would be a final test of the validity of 
this generally accepted model of crystalline STNV. 

1. Introduction 

In this paper the word molecule will refer to any 
biological macromolecule which is made up of identical 
subunits. In particular, we will be considering protein 
molecules with the property of being made up of iden- 
tically folded polypeptide chains, and such aggregates 
of protein molecules as constitute the polyhedral shell 
of small viruses. The crystalline form of such molecules 
will be called a molecular crystal. 

To determine the structure of such molecules from 
X-ray diffraction data of a molecular crystal, the 
'molecular replacement method'  has been developed 
(Rossmann, 1972). This method consists of three parts: 

(1) The rotation problem: determining the orienta- 
tion of the molecules in a molecular crystal and the 
relative orientation of the subunits of each molecule. 

(2) The translation problem: determining the trans- 
lation vectors between molecules in a molecular crystal. 

(3) The phase problem: Using the results of the first 
two steps in determining the phases of the structure 
factors of the X-ray diffraction data, and subsequently 
in determining the structure of the molecules of a 
molecular crystal. 

We will limit our discussion in this paper to the first 
of these three problems, i.e. to the rotation problem, 
to determining the orientation of the molecules in a 
molecular crystal, and of more importance to deter- 
mining the relative orientation of a molecule's con- 

stituent subunits. The method which is used in 
solving the rotation problem is based on the use of the 
rotation function defined by Rossmann & Blow (1962). 
Peaks of this function have been shown to correspond 
to rotations which leave a molecule invariant or rotate 
a molecule into the orientation of some other molecule 
of the molecular crystal. A collection of reprints on 
the molecular replacement method and in particular 
on the rotation problem, including the paper by Ross- 
mann & Blow (1962), can be found in the book titled 
The Molecular Replacement Method (Rossmann, 
1972). 

The computational time of the rotation function is 
quite considerable, and information on all peaks of the 
rotation function is not always available for the 
analysis of the structure of a molecular crystal. Be- 
cause no method to predict all peaks of the rotation 
function corresponding to a given molecular crystal 
has been formulated (Rossmann, 1973), no method has 
been available for use in a systematic analysis of rota- 
tion function data, nor to verify the validity of molec- 
ular crystal structures proposed on the basis of limited 
rotation function data. Consequently, rotation func- 
tion data has been misinterpreted (Akervall et al., 
1971a). 

It is the purpose of this paper to formulate in a 
rigorous mathematical manner a method to predict 
all peaks of the rotation function corresponding to a 
given molecular crystal. The applicability of this 
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method will be shown both in the analysis of rotation 
function data and in testing the validity of molecular 
crystal structures proposed on the basis of limited 
rotation function data. 

In § 2 we first review some fundamental concepts of 
crystallography, pointing out that a molecular crystal 
of space-group symmetry F can be partitioned into a 
set of simple molecular crystals. We then show that all 
rotations which leave a molecule of a simple molecular 
crystal invariant or rotate it into the orientation of 
some other molecule of the simple molecular crystal 
can be determined from the rotational part of elements 
of the space group F and the symmetry point group, the 
set of all rotations which leaves a molecule invariant, 
of any one molecule of the simple molecular crystal. 

We determine in § 3 all peaks of the rotation func- 
tion corresponding to a given molecular crystal, and a 
method to determine, assuming that all peaks of the 
rotation function are known, the orientation and 
symmetry point group of the molecules of a molecular 
crystal. This method is then applied to the case of 
bovine liver catalase. In addition we discuss the in- 
formation on the molecular crystal which may be 
obtained from an analysis of the height of the rotation 
function peaks. 

The analysis of the rotation function data of satellite 
tobacco necrosis virus (STNV) is discussed in § 4. It is 
shown that the limited available rotation function data 
indicate a molecular crystal with molecules of icosa- 
hedral point-group symmetry. All peaks of the rotation 
function corresponding to this generally accepted 
model of STNV proposed by Klug (1971) and Akerval 
et al. (1971b) are determined and tabulated. 

2. Molecular crystals 

Consider a molecular crystal whose symmetry group is 
the space group F. The elements of a space group F are 
denoted by F=[R]'c(R)+t] where R is a proper or im- 
proper rotation, z(R) the non-primitive translation 
associated with R, and t a primitive translation. Let 
r~, i--1, 2 . . . .  denote the molecular position vectors, 
the position vectors of the centre of mass of the mole- 
cules. The molecules of the molecular crystal can be 
partitioned into simple molecular crystals consisting 
of identical molecules whose molecular position vectors 
can all be obtained by applying all elements of the 
space group F to any one molecular position vector h.  
We will say that the molecular position vectors of a 
simple molecular crystal are generated by F from r~. If 
no two molecular position vectors of the molecular 
position vectors generated by F from r~ are equal, the 
molecular position vectors are called general position 
vectors; otherwise they are called special position vec- 
tors. 

A molecular position vector r~ can be characterized 
by specifying its site space group F(r0. The site space 
group F(r0 is defined as the subgroup of all elements of 
F which generate the set of molecular position vectors 

rl +t ,  for all primitive translations t of the subgroup 
of primitive translations "i of F. The point group 
lq(rl) of F(rx) is called the site point group of rl (Ope- 
chowski & Guccione, 1962). 

We decompose F into left cosets relative to F(r0: 

F=F(rx)+[RzIz(R2)]F(rl)+... +[R,,Iz(R,,)]F(rx). (1) 

The coordinates of the set of n molecular position vec- 
tors 

rl; [Rzl'c(Rz)]r~= Rzrl + x(Rz); . . .  ; 
[R,I x(R,)]rx = R,,r~ + z(R,) (2) 

are the coordinates of the molecular position vectors 
of the molecules in the primitive unit cell of a simple 
molecular crystal whose molecular position vectors 
are generated by F from r~. This set of coordinates is 
given for each F and r~ in International Tables for X-ray 
Crystallography (1952) and these coordinates are called 
there the coordinates of equivalent positions, while the 
site point group R(ra) is called the point-group symmetry 
of each of the equivalent positions. If r~ is a general 
position vector, F(r~)=T and R(ra) consists of the 
identity element only. 

Let M(r~), i=  1,2 . . . .  denote the molecule of a molec- 
ular crystal whose molecular position vector is ri. The 
invariance of the molecular crystal under elements 
[R Ix(R)+ t] of its symmetry space group F means that 
for every molecule at molecular position ri there is an 
identical molecule at molecular position [RIz(R)+t]r~ 
= Rr~ + ~(R) +t .  The orientations of the molecules at 
r~ and [Rlr(R)+t]r~ relative to the crystallographic 
axes are not necessarily the same. The mutual orienta- 
tion of these two molecules is determined by the rota- 
tion R of the space-group element [RIz(R)+ t] and we 
shall write 

M([R I ~(R) +t]r,) = RM(r3, (3) 

that is, the orientation relative to the crystallographic 
axes of the molecule M([R[ z(R) +t]ri) is identical to 
the orientation of the molecule M(r~) after the latter 
has been rotated about ri, its centre of mass, by the 
rotation R. 

It follows from equation (3) that no two simple molec- 
ular crystals have molecules in common, and the 
elements of F permute the molecules of each simple 
molecular crystal among themselves. It also follows 
that the position and orientation of all molecules of a 
simple molecular crystal whose molecular position 
vectors are generated by F from r~ can be determined 
from the position and orientation of the molecule 
M(ra). We will therefore denote by [F; M(r0] a simple 
molecular crystal whose molecular position vectors 
are generated by F from ra, and will say that the simple 
molecular crystal [F; M(ra)] is generated by F from the 
molecule M(ra). rl will always be taken as a position 
vector of a molecule in the primitive unit cell of the 
molecular crystal. A molecular crystal of space-group 
symmetry F and consisting of q simple molecular 
crystal [F; M(rx)], [F; M(r2)] . . . . .  [F; M(r~)] will be 
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denoted by [F; M(r0, M(rz), . . . ,  M(r,)] and said to be 
generated by F from the molecules M(r0, M(rz) . . . .  , 
M(r~). This notation for a molecular crystal can be 
used as a classification label of all molecular crystals 
and is analogous to the classification label of spin 
arrangements in crystals (Opechowski & Dreyfus, 
1971). 

We shall see in the following section that the peaks 
of the rotation function are related to rotations which 
leave a molecule of a molecular crystal invariant or 
rotate it into the orientation of some other molecule 
of the molecular crystal. We therefore now determine 
what are the distinct molecular orientations of mole- 
cules in a molecular crystal and then the rotations 
which leave a molecule of a molecular crystal invariant 
or rotate it into the orientation of some other molecule 
of the molecular crystal. We will first consider the case 
of a molecular crystal consisting of a single simple 
molecular crystal. 

The orientation of the n molecules in the primitive 
unit cell of a simple molecular crystal [F; M(r0] rela- 
tive to the molecule M(r0 is determined using equation 
(3) with [RI~(R)+t]=[R~I~(R~)], i=1,  2, . . . ,  n, the 
coset representatives of the decomposition of F relative 
to F(r0 given in equation (1) where [RI[~(R0] =(El  0). 
Since M(r + t) = M(r), the number of distinct molec- 
ular orientations is at most equal to n, the number of 
molecules in the primitive unit cell. We will now deter- 
mine the number m of distinct molecular orientations. 

Let R denote the point group of the space group F, 
and P the symmetry point group of the molecule 
M(r0, i.e. the group of all rotations such that PM(r~)= 
M(r0, rotations about r~ which leave the molecule 
M(r0 invariant. We define X = R N P, the intersection 
of the point groups R and P, and decompose R into 
left cosets relative to X: 

R =X-F R2X+... +RmX. (4) 
Since elements of X are symmetry elements of the mole- 
cule M(rO, elements of each coset when applied to 
M(rO rotate this molecule into the same orientation, 
and elements of different cosets rotate the molecule 
into different molecular orientations. Consequently, 
there are exactly m distinct molecular orientations of 
molecules in [F; M(r~)]. We shall denote the m distinct 
orientations as Mk, k = l, 2 . . . .  , m where/I//1 = M(ra) 
and Mk = RkMI where Rk is the kth coset representative 
in the coset decomposition of R relative to X given in 
equation (4). 

Setting [G[ to denote the order of the group G, from 
equations (1) and (4) we have that n=IFI/IF%)I= 
[R[/IR(r0[, m=[Rl/lXI, and consequently that n =  
(IX]/] R(r0Dm. Since all rotations of the site point group 
R(r0 are necessarily contained in X, n is equal to or an 
integral multiple of m. The number of molecules in 
the primitive unit cell in a specific orientation is n/m 
which is an integer and is independent of the orienta- 
tion. There are then n[Tl/m molecules in [F; M(r0] in 
each of the m distinct orientations. Only if X = R(r0 is 

n=m and the number of distinct molecular orienta- 
tions equal to the number of molecules in the primitive 
unit cell. 

The distribution of the n molecules in the primitive 
unit cell among the m distinct orientations is deter- 
mined as follows: The position vector of the jth mole- 
cule M(U ) in the primitive unit cell is, see equation (2), 
U = [R j[ r(R~)]r~. Rj is an element of R, and if this rota- 
tion R i is contained in the kth coset of equation (4), 
then M(U ) = M  k, i.e. the j th molecule in the primitive 
unit cell is in the kth distinct molecular orientation. 

As an example consider the simple molecular crystal 
[F; M(r~)] of space-group symmetry F = D4~(P422) 
where r, is a general position vector. The site space 
group F(r,) = Cx~(P 1) and the coset decomposition of F 
relative to F(r,) is: 

F = F(rl) + (2x 10)F(r,) + (2y 10)F(r,) + (2z 10)F(r,) 
+ (2x, 10)F(rl) + (2~y 10)F(r~) + (4z 10)F(rl) 
+ (4s [0)F(r0. 

The n = 8 molecules in the primitive unitcell have molec- 
ular position vectors which we denote as follows" 

rl r5 = 2xyrl 
r2 = 2xr, r6 = 4zr~ 
r3 =2yrl r7 =4~rl (5) 
r 4  = 2zrl r8 = 2 ~ r , .  

The site point group 8 ( r 0 =  E. 
We consider the case where the molecule M(r,) has 

the symmetry point group P: 

P = {E,2v,2x~,2~=}. (6) 
Therefore 

X = P  N R={E,2y} 
and: 

R = X + 2xX + 2xyX + 2~yX 

= {E, 2,} + {2x, 2,) + {2xv, 4~ a} + {2~y, 4z}. (7) 

There are then m = 4  distinct molecular orientations 
among the n = 8  molecules in the primitive unit cell, 
two molecules in each of the four orientations. The 
four orientations are, see equation (7), Ml=M(r t ) ,  
Mz=2xMt, Ms=2xyM.  and M4=2~vM1. With M~ 
represented by a rectangular block, these four orienta- 
tions are shown in Fig. 1. Since E and 2y, 2x and 2z, 
2xy and 4 s, and 2~ and 4z, are pairs of rotations be- 
longing to the same cosets in equation (7), we have 
from equations (5) and (7) that the distribution of the 
eight molecules in the primitive unit cell among the 
four distinct molecular orientations is: 

M(rO-- M(ra)= M1 
M(r2) = M(r4)= M2-- 2xM~ 

M(rs) = M(rT)= Ma = 2xyM~ 

M(r6)-- M(r~)= M ,  = 2~M~ . 
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We will now determine the rotations which leave a 
molecule of a simple molecular crystal invariant or 
rotate it into the orientation of some other molecule 
of the simple molecular crystal. Since there are exactly 
m distinct molecular orientations Mk, k = 1, 2, . . . ,  m, 
we determine all rotations R(jk)  which satisfy 

R( jk )Mj  = Mk (8) 

for j , k =  1, 2, . . . ,  m. The set of rotations {R(jk)} for 
specific j and k is the set of all rotations which rotate 
molecules of the j th  orientation into molecules of the 
kth orientation. We shall determine these rotations in 
terms of the rotations Rk, k =  1, 2, . . . ,  m the coset 
representatives of equation (4), and the rotations P of 
the symmetry point group P of the molecule M(rl) 
which has been taken as the molecule of molecular 
orientation MI. 

The set of IPl rotations RkPRj '1 for every element P 
of P belongs to the set {R(jk)},  since" 

RkPRj- XMj = RkPM1 
= RkM1 

= ll,'[ k . 

There are no additional rotations in {R(jk)} as one 
can show that every rotation R(jk)  which satisfies equa- 
tion (8) must be of the form RkPRj -~ for some element 
P of P" from equation (8) 

R(jk)RjM1 = RkM1 
RF XR(jk)RiM1 = M1 

and R [ t R ( j k ) R j  is thus a rotation which leaves mole- 
cules of the orientation M1 invariant. Consequently 
this rotation belongs to the group P, and for some 
element P of P 

R ; ~ R ( j k ) R j =  P 
and therefore: 

Consequently: 
R(jk)=R~PRj -~. 

{R( jk ) }=  {RkPRj -1} (9) 

is the set of all rotations which rotates a molecule of the 
j th  orientation into the orientation of a molecule of the 
kth orientation. 

The set of rotations {R(j j)}  constitutes a group, the 
symmetry point group of molecules of the j th  orienta- 
tion. The set of rotations {R(jk)}  j C k  does not in 
general constitute a group of rotations. We note that 
{R(k j ) }= (R(jk)-~} .  

The I Pl mz rotations {R( jk ) } . ] , k=  1, 2 . . . .  , m con- 
tain all rotations which leave a molecule invariant or 
rotate it into the orientation of some other molecule of 
a simple molecular crystal; and conversely, every one 
of the IPlm z rotations corresponds to such a rotation. 
The number of times a distinct rotation appears in this 
set of IPlm 2 rotations is proportional to the number of 
molecules of the simple molecular crystal which when 
rotated by the rotation are left invariant or rotated into 
the orientation of some other molecule. If a specific 

rotation appears d times among the IPlm 2 rotations, d 
taking the possible integral values of between 0 and m, 
then dim of the molecules of the simple molecular 
crystal are left invariant under this rotation or rotated 
into the orientation of some other molecule. All rota- 
tions of the point group R of the space group F of a 
simple molecular crystal are each contained d = m  
times in this set of I PI m2 rotations. 

In the example considered above, there are four 
distinct molecular orientations. The symmetry point 
group P of M1 is given in equation (6), and from equa- 
tion (7) we have: 

R I = E ;  R2=2~,; R3=2xr; R 4 = 2 ; r .  

The 64 rotations {R( j k ) } j , k  = 1, 2, 3, 4 are found using 
equation (9) and are given in Table 1. The 24 distinct 
rotations constitute the point group O (432). The crystal- 
lographic rotations, which constitute the point group 
R=D~ x'r'=), each appear four times since m = 4 ,  and 
each of the remaining rotations of O (432) appear 
twice. For example, see Table 2, the rotation 4x inter- 
changes the orientation of molecules of orientation 
3/3 and M4, i.e. 4~,M3 = M4 and 4~,M4 = M3, but neither 
leaves invariant nor rotates into the orientation of 
some other molecule, molecules of orientation Ma and 
M2. 

In the case of a molecular crystal [F; M(rl), 
M(r2), . . . ,  M(ra)], consisting of identical molecules, 
the rotations which leave molecules of the molecular 
crystal invariant or rotate them into the orientation 
of other molecules are determined as follows. Let M ;  
be the orientation of the molecule M(r=) from which 
the c~th simple crystal is generated by F. The symmetry 
point group of M(r=) will be denoted by W, and R~, 

MI  

Z 

M 2 = 2x M I 

J Z 

M 3 = 2 x y  M I M 4 = 2Ey M I 

Fig. 1. The four distinct molecular orientations of the simple 
molecular crystal [F; M(rl)] where F=D~ (P422), rl is a 
general position vector, and the symmetry point group of 
M(rl) is Dt2 y ...... ). The molecules are represented schematically 
by fiat rectangular plates. 
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Table 1. The sets o f  rotations {R(jk)}= {RkPRj- ~}, 
], k = 1,2, 3, 4 are tabulated for P = {E, 2~, 2~, 2~,} and 

R~ = E, R 2  = 2~, R 3 = 2~, and R 4 = 2~ 

11 E 2y 2xy 2~ 
21 2~ 2~ 43 4y 
31 2xy 4~ 3 2~y z 2 3x~z 
41 2~y 41 3~y~ 3.~,~ 
12 2x 2z 4y 43 
22 E 2~, 2~ 2x~ 
32 43 2~, 2 _ 3~y~ 3~y~ 
42 4~ 2~y 3z~y~ 3x~ 
13 2~,y 43 3~,~ 3 ~  
23 4~ 2~y 3xy~ 3~y~ 
33 E 2x 2~z 2y~ 
43 2~ 2y 4~ 4~ 
14 2~ 4~ 3 ~  32~ 
24 43 2,o, 3~,~ 3x~ 
34 2~ 2~ 4~ 4,, 
44 E 2x 2~,~ 2~ 

Table 2. In the simple molecular crystal [F; M(r0] 
where F = _DI (P422), rl is a general position vector, and 
p = D~y. ~. ~z), the intersection of  the ith row and the jth 
column of  this table gives the distinct molecular orienta- 
tion into which molecules o f  distinct orientation M~ are 

rotated by rotations Rj given in Table 1 
If the (ij)th entry is blank, then the rotation Rj neither leaves 
invariant molecules of the ith distinct orientation, nor rotates 
them into the orientation of any other molecule of the simple 
molecular crystal. 

E 2x 2y 2z 3~,~ 3~y~ 3 ~  3x~ 
MI Mt M2 MI M2 M4 M4 3//3 3//3 
M2 M2 M1 M2 ml  M3 m3 M4 M4 
M3 M3 M3 3//4 3//4 
M4 M4 M4 3//3 M3 

3xy. 32- 32- xyz xyz 32~yz 2~y 4~ 41 2xy 
MI /1//4 M4 M3 M3 
M2 M3 M3 M4 M4 
M3 M2 M1 3'/2 M1 M2 M1 M2 M1 
M4 M1 M2 M1 M2 Mt 342 MI M2 

2~z 2yz 4x 4Sx 2~z 43 2x: 4y 
Ml /1//1 M2 Ml M2 
M2 M2 M1 M2 MI 
M3 M3 M3 M4 M4 
M4 M4 M4 M3 M3 

j = 1, 2 . . . .  , m" will denote the coset representatives of 
equation (4) when X = Iq n W. We then determine for 
each e a rotation R" such that R ' M I = M ~ .  The set 
{R(~j, ilk)} of all rotations which rotate a molecule of 
the orientation M,~ into the orientation of a molecule 
of the orientation M~ is then given, in terms of pl, 
R ~, and R~ as follows: 

{R(off, f lk)}= {R~ Rt~P~(R~R")-~} . (10) 

3. The rotation function 
The Patterson function of a molecular crystal consists 
of two parts: sets of self-vectors representing the inter- 

atomic distances of atoms of each of the molecules, and 
cross-vectors representing interatomic distances of 
atoms on different molecules. The symmetry and 
orientation of each set of self-vectors is related to 
the symmetry and orientation of the corresponding 
molecule: The number of distinct sets of self-vectors 
is equal to the number of distinct molecular orienta- 
tions of molecules in the molecular crystal. If the 
symmetry point group of a molecule is P, a group of 
proper rotations, then the symmetry point group of 
the corresponding set of self-vectors is P × I, since the 
inversion 1 is always a symmetry element of the 
Patterson function. (As our interest is in the structure 
of proteins and protein aggregates, and as proteins 
consists only of levo amino acids, rotations of P, of 
the point group of F, and of rotations R corresponding 
to peaks of the rotation function defined below will be 
proper rotations.) In addition, if the orientations of 
two molecules are related by a rotation R then the 
orientations of the corresponding sets of self-vectors 
are also related by the same rotation R. 

Because of these relationships between the symmetry 
of the molecules and the symmetry of the corre- 
sponding sets of self-vectors, and between the relative 
orientation of two molecules and the relative orienta- 
tion of the corresponding sets of self-vectors, the rota- 
tion function N(R) has been defined (Rossmann & 
Blow, 1962) to determine from the Patterson function 
of molecular crystals the symmetry point group and 
relative orientation of molecules in molecular crystals. 
In the case of a molecular crystal consisting of identical 
molecules, the rotation function is defined as 

~(R)= I P(x)P(Rx)dx, (ll) 
v 

the integral of the product of a Patterson function 
P(x) with a rotated image of itself. The integration is 
over a volume V about the origin, chosen as to 
minimize contributions from cross-vectors. The rota- 
tion function ~ (R)  will have peaks for those values of 
R corresponding to rotations which leave a set of self- 
vectors invariant or rotate a set of self-vectors into the 
orientation of some other set of self-vectors. 

We shall now determine the set {R} of rotations R 
corresponding to all peaks of the rotation function 
~ (R)  of a molecular crystal consisting of a single 
simple molecular crystal [F; M(rl)], where the sym- 
metry point group of the molecule M(r0 is P. The sets 
of rotations {R(jk)}, j, k = 1, 2 . . . . .  m, see equation (9), 
consist of all rotations which leave a molecule of a 
simple molecular crystal invariant or rotate the mole- 
cule into the orientation of some other molecule of the 
simple molecular crystal. Because of the corre- 
spondence between the symmetry and orientation of 
molecules of a molecular crystal and the symmetry 
and orientation of the corresponding sets of self- 
vectors of the molecular crystal's Patterson function, 
the set {R} of rotations corresponding to all peaks of 
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the rotation function of a simple molecular crystal is 

{ R } = [ { R ( j k ) } l , j , k = l , 2  . . . .  , m l ,  (12) 

the set of distinct rotations contained in the [Plm 2 
rotations {R( jk ) } ,Lk= 1, 2, . . . ,  m. 

In the example of the previous section, the set of 64 
rotations {R(jk)}, j , k =  1, 2, 3, 4 contained 24 distinct 
rotations, rotations of the point group O (432). In 
general, the set of rotations {R} of equation (12) does 
not constitute a group, as will be seen in the example of 
§ 4. In the case of a molecular crystal consisting of 
identical molecules and more than a single simple 
crystal, the sets of rotations given in equation (10) are 
used in place of those of equation (9), and the rota- 
tions corresponding to all peaks of the rotation func- 
tion are found in the same manner as above. 

A second problem which we shall investigate is how 
to determine from rotation function data information 
on the point-group symmetry and orientation of mole- 
cules in a molecular crystal. Consider a molecular 
crystal consisting of a single simple molecular crystal 
[F; M(r0], and let {R} denote the set of rotations 
corresponding to all peaks of the rotation function 
~'(R) of this simple molecular crystal. Let P be a subset 
of {R} which constitutes a group and contains as a 
subgroup the site point group R(rl). P will be called a 
possible symmetry point group of M(rl) if equation (12) 
is satisfied, i.e. if the set of rotations [{R(jk)}Lk= 
1, 2 . . . .  , m], where {R(jk)} is defined by equation (9), 
is identical with the set of rotations {R}. With the 
knowledge of the symmetry point group P of M(r0 
and the space group F one can then determine the 
orientation of all molecules of the simple molecular 
crystal [F; M(rl)]. From each possible symmetry point 
group P one derives then a possible model of the simple 
molecular crystal. A possible model of a molecular 
crystal is to be understood only as a model of the 
molecular crystal which specifies the symmetry point 
group and orientation of the molecules and which 
gives rise to a rotation function with peaks corre- 
sponding to a given set of rotations. Additional 
information on, e.g., the structure of the molecule or 
on the relative peak heights, can as will be seen below, 
place additional conditions on the admissibility of such 
possible models as actually representing the real molec- 
ular crystal. 

A simple molecular crystal [F; M(rl)] can be 
generated by F from any molecule M(rt) of the simple 
molecular crystal. The position vector r~ in [F; M(rl)] 
has been taken as an arbitrary position vector of a 
molecule in the primitive unit cell of the simple molec- 
ular crystal. Because of this arbitrariness in the 
choice of the position vector r~ two possible models of" 
a simple molecular crystal corresponding to two 
possible symmetry point groups P~ and P2 will be 
identical if P~ and P2 belong to the same equivalence 
class of point groups and are such that RP~R -~= Pz 
where R is a rotation of the point group of the space 
group F. That is, a simple molecular crystal [F; M(r~)] 

where P~ is the symmetry point group of M(rl) contains 
in its primitive unit cell a molecule M(rj) whose sym- 
metry point group is Pz; and the simple molecular 
crystal [F; M(r0] can be alternatively denoted by 
[F; M(ri)]. Consequently, the number of distinct 
possible models of a simple molecular crystal will in 
general be less than the number of possible symmetry 
point groups. 

In the case of a molecular crystal consisting of more 
than a single simple molecular crystal, the same 
method is used. However, the sets of rotations {R(jk)} 
of equation (9) are replaced by the sets of rotations 
{R(~j, ilk)} of equation (10). 

As an example of this we consider the rotation func- 
tion data of bovine liver catalase. X-ray diffraction 
studies have shown that the catalase molecule has at 
least one twofold axis of symmetry (Glauser & Ross- 
mann, 1966; Gurskaya, Labanova & Vainshtein, 1971). 
Electron microscopy studies (Barynin & Vainshtein, 
1971) indicate that the catalase molecule consists of 
four subunits and has the symmetry point group D2 
(222). A rotation function study of the trigonal crys- 
talline form of catalase was then performed to deter- 
mine the symmetry point group of the catalase mole- 
cule (Eventoff & Gurskaya, 1975). 

Trigonal crystalline catalase is a single simple molec- 
ular crystal [F; M(r0] whose space-group symmetry 
is F = D  4 (P3121) and where rl is a general position 
vector. The rotation function data shows that a set of 
rotations {R} corresponding to peaks of the rotation 
function constitute the point group O (432) (Eventoff 
& Gurskaya, 1975). In Fig. 2 we give the cubic coor- 
dinate system in which the rotations of {R } and of the 
space group F will be taken, and the relation of the 
trigonal coordinate system with respect to this cubic 
coordinate system. The molecular position vectors of 
the six molecules in the primitive unit cell will be 
denoted by 

r l  

rz= (3z~y~ 12x)r~ 
r3=(3~=1 x)rl 
r 4 = (2~y I O)rl 
rs=(2~zl 2~)rl 
r6= (2~= [ 1:)r~ 

where ~ is the non-primitive translation associated 
with the threefold rotation of the space group F=  
D~ (P3~21). We assume that the set of rotations {R } = 
0 (432) corresponds to all peaks of the rotation func- 
tion, and now determine all possible models of trigonal 
crystalline catalase. There are 30 groups P contained 
in the set of rotations { R } = O  (432). Of these, six 
groups D~ xy=), C~ xy=), C~ xy), C~ x=), C(z TM and C1 give rise 
to a set of rotations [{R(jk)} ]j,k = 1, 2, . . . ,  6] = D~ ~y=) 
and can be eliminated as possible symmetry point 
groups of the molecule M(rl). One finds that not all of 
the 24 possible models of the simple molecular crystal 
determined from the remaining possible symmetry 
point groups P are distinct. One finds that there are 
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only ten distinct possible models corresponding to the 
possible symmetry point groups: 

O; T; D(3~-Y~); C~YZ); D~X); C(4X); 

D~z~,,,z~; D~X,~,~z~; C~x~; C~ ~.  . 

The possible point group P = C~ r) does not give rise to 
an additional distinct possible model, since taking 
P =  C(2 r) as the symmetry point group of M(r3), ra= 
(3xrz [~)r~, gives rise to a possible model identical with 
the possible model found by taking P =  C~2 x) as the 
symmetry point group of M(r0. 

The catalase molecule consists of four subunits 
(Barynin & Vainshtein, 1971), and, following Eventoff 
& Gurskaya (1975), we assume that the subunits have 
no intrinsic rotational symmetry other than the trivial 
identity rotation. Consequently, we eliminate as pos- 
sible models of the molecular crystal those models 
corresponding to all possible symmetry point groups 
not belonging to the classes of point groups C2(2), 
D2(222), and C4(4). The remaining possible models are 
those with the possible symmetry point groups: 

C(4X); O~zX'~"~); D(zX'Yz'Tz); C(zX); C~z :°'~. (13) 

Three of these possible models, those corresponding 
to the possible symmetry point groups C(4 x), Dr2 ~'~'~), 
and C(2 ~) have been considered by Eventoff & Gurskaya 
(1975). 

In the case of P=D~ x,~''7~) the molecules of the 
simple molecular crystal are of three distinct orienta- 
tions; these orientations and the orientations of the 
molecules in the primitive unit cell are" 

M(r~) = M(rs)= M~ 
M(r2)--  M(r6) 3 = M2= 3~yzM~t 
M(r3) = M(r4) = M3 = 3x~,zM~. 

In the remainder of the cases there are six distinct 
orientations: 

M(r0=M~ 
M(rz) Mz = = 3x~,zM~ 
M(ra) = M3 = 3xyzM~ 
M(r.)  = M4 = ~ , M ~  
M(r~) = M~ = :Z~zM~ 
M(r6) = M6 = 2~zM~. 

YH 

Fig. 2. The hexagonal coordinate system (Xn, Yn, Zn) of the 
bovine liver catalase molecular crystal is shown relative to 
the cubic coordinate system (X, Y,Z) in which are defined 
the rotations corresponding to the peaks of the associated 
rotation function. 

A method to distinguish between the five possible 
models corresponding to the five possible symmetry 
point groups P given in equation (13) is as follows: 
There are two contributions to a peak of the rotation 
function ~ (R)  and we shall write: 

~ ( R )  = ~ , ( n )  + ~ ( R ) .  

NS(R) is the contribution due to overlapping of sets 
of self-vectors, and ~k(R) is the contribution due to 
overlapping of cross-vectors of the Patterson function 
of the molecular crystal. In general, the volume of 
integration V in equation (11) cannot be chosen as to 
eliminate completely all contributions Nk(R). For a 
crystallographic rotation R~, a rotation of an element 
of the space group F of the molecular crystal, since for 
every cross-vector k there exists a cross-vector 
Rck, one anticipates a non-negligible contribution 
~k(R~) to N(Rc). However, for non-crystallographic 
rotations R,~, rotations corresponding to peaks of the 
rotation function but not a rotation of an element of 
the space group F of the molecular crystal, and a cross- 
vector k, there is in general no cross-vector R,ck. Con- 
sequently we shall assume that Nk(R,~) can be neglected 
with respect to NS(R,¢). That is, we assume 

and: 
~(Rc)=~(R~) + ~k(l~) 

The ratio ~(R~)/~(R,,~) can be experimentally deter- 
mined as this represents the ratio of peak heights. Since 
~S(R) is proportional to the number of molecules of 
the molecular crystal invariant under R or rotated 
into the orientation of some other molecule by the 
rotation R, the ratio ~ ( R c ) / ~  (R,,~) can be calculated 
from a possible model of the structure of the molecular 
crystal. Therefore one can determine the ratio of the 
two contributions to ~(Rc): 

~k(Rc) ~(Rc) /~(R.~)  - ~S(Rc)/~(R,,c) 
(14) ~ s ( R ~ )  ~S(R~)/~(R.c) 

In the case of catalase, the crystallographic rotations 
Rc are the rotations of the group Da (xy~), and Rnc are 
rotations O - D ~  xyz). From Table 2 of Eventoff & 
Gurskaya (1975) one finds that ~(R¢)/~(R,~)__ 3. One 
has for the possible models corresponding to P = C(4 ~) 
and D(2 x' y' ~) that ~S(R~)/~(R,~) = 1, and therefore, from 
equation (14) that ~k(Rc)/~S(R~) ___ 2. For the possible 
models corresponding to P--D(z ~,yz,~z), C~ ~), and C(z ~y). 
one finds that ~S(R~)/~(R,~)=3, and from equation 
(14) that ~k(R~)/~(Rc)~_O. Since we have assumed 
that ~k(R¢) is not negligible relative to ~S(R~), these 
calculations indicate that the only possible models 
which are admissible are the two corresponding to the 
possible symmetry point groups C~ x) and D~ x'y'z), in 
agreement with the conclusions of Eventoff & Gur- 
skaya (1975). 
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4. Satellite tobacco necrosis virus 

In practice, due to the quite considerable computation 
time, not all peaks of the rotation function of a molec- 
ular crystal are calculated from the experimental data. 
Consequently not all peaks of the rotation function are 
known and the procedure of § 3 to determine the 
symmetry point group and orientation of molecules 
in a molecular crystal cannot be applied. Instead, using 
the incomplete available data one can use the following 
procedure: Based on the available data and possibly 
additional criteria, one chooses a symmetry point 
group P and with the knowledge of the symmetry 
space group F and molecular position vectors, one 
constructs a model of the molecular crystal. From this 
model one then calculates, using the method of § 3, the 
set of all peaks of the corresponding rotation function. 
These peaks are then compared with the incomplete 
available data. For this model to be a possible model 
of the molecular crystal, the set of calculated peaks 
must include all known peaks, and in general will 
include additional peaks. It must then be determined 
if these additional peaks are in fact contained in the 
rotation function of the actual molecular crystal. If so, 
one concludes that the model is a possible model of the 
molecular crystal. In this section we will consider as an 
example of such a procedure the analysis of the rota- 
tion function data of crystalline satellite tobacco 
necrosis virus (STNV), a small 'spherical' virus con- 
sisting of a core of nucleic acid and a polyhedral pro- 
tein shell. The symmetry point group of the virus is 
assumed to be the symmetry point group of the pro- 
tein shell. 

Crick & Watson (1956) proposed that the protein 
shell of small 'spherical' viruses consist of a number of 
identical subunits in a structure of cubic point-group 
symmetry. Casper & Klug (1966) concluded that 
icosahedral point-group symmetry was preferred, and 
this conclusion has been confirmed by electron micro- 
scopic and X-ray diffraction studies on small viruses 
(Klug, Longley & Leberman, 1966). 

A rotation function analysis of 15 A X-ray diffrac- 
tion data of STNV crystals was performed by Akervall 
et al. (1971a) and interpreted to imply a cubic point- 
group symmetry of the STNV molecule. These results 
were reinterpreted (Klug, 1971 ; Akervall et al., 1971b) 
as being consistent with icosahedral point group 
symmetry of the STNV molecule. In these rotation 
function studies of crystalline STNV the concluded 
models were based on peaks of the rotation function 
associated with the anticipated icosahedral symmetry 
of the STNV molecule and additional peaks corre- 
sponding to rotations not among the rotations of the 
icosahedral point group. However, this analysis was 
based on only limited rotation function data, as all 
peaks of the rotation function were not experimentally 
determined. While the concluded model indicating 
icosahedral point-group symmetry of the STNV mole- 
cules does give rise to all of the known peaks of the 

rotation function, no attempt was made to calculate 
all peaks of the rotation function corresponding to 
this model and then to determine the existence of these 
peaks. We will now calculate all such peaks. 

The space group of monoclinic crystalline STNV is 
F = C 2  (C~) a base-centred monoclinic space group 
with the twofold rotation axis along the b direction. 

The generators of this space group are EI  -2- -2 0 , 

(E]~a 2 b 0 ) , ( E i 0 0 c ) , a n d ( 2 b l 0 0 0 ) w h e r e ( R o s s _  

mann, Akervall, Lentz & Strandberg, 1973): a--319, 
b--304, c=185 A, and fl=94°22 ', and where the 
primitive unit cell contains two molecules whose molec- 
ular position vectors are +(0.23a, 0, 0-26c). The 
crystalline STNV then consists of a single simple molec- 
ular crystal [F; M(rl)] whose symmetry space group is 
F = C2 and where rl is a general position vector. 

The rotation function analysis of Akervall et al. 
(1971a, b) determined a set of peaks which contained 
two subsets of peaks corresponding to rotations of 
icosahedral point groups J (532), and a single subset 
of peaks corresponding to rotations of the cubic point 
group O (432). These subsets of peaks are not mutually 
exclusive, and in what follows we will refer to these 
subsets of peaks as, respectively, the icosahedral peaks 
and the cubic peaks. These results point to 

(1) An icosahedral symmetry point group of the 
STNV molecules. 

X2 X 2 

Mi 

X2 

b 

X3 

M2 
Fig. 3. The two distinct molecular orientations of icosahedral 

molecules in a model of crystalline STNV relative to the 
cubic coordinate system (X1,)(2, X3). The peaks of the rota- 
tion function corresponding to fourfold rotations are along 
the X1, X2, and X3 axes. The crystallographic b axis is also 
shown. 

X3~ 

Fig. 4. The polar coordinates ~, and ~ which specify the direc- 
tion of the rotation axis of a rotation through an angle x. 
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(2) Two distinct molecular  orientations in the primi- 
tive unit cell related by the crystal lographic twofold 
rota t ion about  the b axis. 

Since there is only one subset of  peaks corre- 
sponding to rotat ions of  the point  group T (32) and this 
subset of  peaks is common  to both subsets of  icosa- 
hedral  peaks and the subset of  cubic peaks, the orienta- 
tion of  the two distinct molecular  orientations relative 
to the cubic peaks is determined. These two orienta- 
tions of  the icosahedral  molecules are denoted by M1 
and M 2 =  2bM1 and are shown in Fig. 3 relative to a 
cube whose symmetry  axes are the directions of  the 
cubic peaks. The b axis, about  which a twofold rota-  
tion interchanges the two distinct molecular  orienta- 
tions, is also shown. The orientation of  these molecules 
with respect to the crystal lographic a and c axes is not  
shown, but may  be determined f rom the orientation 
of  the cubic peaks relative to these axes (Akervall  et al., 
1971a, b). 

All peaks of  the rotat ion function corresponding to 
this model  of  crystalline STNV correspond to the 
distinct rotat ions in the sets of  rotat ions {RUk)} 
j ,  k = 1, 2 where R~ = E, R2 = 2~ and where P is the icosa- 
hedral  point  group J (532) of  the molecule M~ of  Fig. 3. 
The rotat ions of  {R(11)}, rotat ions through an angles x 
about  rota t ion axes defined by the spherical coor- 
dinates ~, and rp, see Fig. 4, are listed in Table 3 in 
terms of  (K, ~,, ~0), and are the 60 rotat ions of  the point  
group P. The set of  60 rotat ions {R(12)} rotat ions R 
such that  RM1 = M2 are listed in Table 4. The set o f  
rotat ions {R(21)} are derived f rom Table 4 by re- 
placing ic by - to ,  and the rotat ions of  {R(22)} f rom 
Table 3 by replacing ~0 by ~0+90 °. 

, ooo 0.05/ 

Fig. 5. Stereographic projection of the rotation axes of the 
rotations corresponding to all peaks of the rotation function 
of a model of crystalline STNV. 0, A, [], and ~ denote, 
respectively, two, three, four, and fivefold rotation axes. 
The threefold rotation axes denoted by , ~  are also rotation 
axes of rotations through K= +44.48 °, +75-52 °, ± 164"48 °. 
1(.~,(~,(~) represent rotation axes of rotations through the 
angles of, respectively, to= +110"21 ° , + 138.59 ° , and 
+ 154-76 °. 

Of  the 240 rotat ions,  there are 216 distinct rotat ions,  
all rotat ions excepting those belonging to the cubic 
point  group O (432) appear  once, while the cubic rota-  
tions all appear  twice. In Fig. 5 a stereographic projec- 
tion is given showing the orientation of  the axes of  
rotat ion corresponding to these 216 rotat ions.  Note  
that the four  axes of  the threefold cubic rotat ions are 
also the axes of  rota t ion of  those rotat ions where 

Table 3. The set of  sixty rotations {R(11)} 

These rotations leave invariant icosahedral molecules of orien- 
tat±on MI shown in Fig. 3. 

/¢ 

0 
72 

144 
216 
288 
180 

120 } 
240 

0 0 
31.72 0 
58.28 ±90 

90 ± 31.76 
148-28 0 

0 0 
36 ± 58.28 
60 ±20.91 
72 ± 58.28 
90 0 
90 90 

108 ± 58.28 
120 ±20.91 
144 ± 58-28 
20.91 ±90 
54-74 ±45 
69.09 0 
90 ± 69.09 

110.91 0 
125-26 ± 45 

Table 4. The set o f  sixty rotations {R(12)} 

These rotations rotate icosahedral molecules of orientation MI, 
see Fig. 3, into molecules of orientation M2. 

K 

44.48 } 
75.52 

164.48 
90 } 

270 

110.21 

138.59 

154.76 

180 

~, tp 
54.74 + 45 

125.26 + 45 

0 0 
90 0 
90 90 
45.78 _ 13.28 
45.78 + 76-72 
80.52 + 45 
99-47 + 45 

134.22 + 13.28 
134.22 + 76.72 
32.31 +45 
67.79 + 24.09 
67.79 + 65.91 

112.21 +24.09 
112.21 +65.91 
147.69 + 45 

18.46 + 45 
77.06 + 13.28 
77.06 + 76.72 

102.94 + 13.38 
102.94 + 76.72 
161.53 +45 
45 0 
45 + 90 
90 + 45 

135 0 
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K= +44.48 °, +75.52 °, and +164.48 °. Most of the 
peaks calculated here on the basis of this proposed 
model of crystalline STNV have been determined from 
the rotation function data (Akervall et al., 1971a, b). 
However, the 72 peaks corresponding to K= + 110.21 °, 
+ 138.59 °, and + 154.76 ° have as yet to be experi- 
mentally verified. 

The misinterpretation of the rotation function data 
of STNV by Akervall et al. (1971a) was based on the 
two following erroneous assumptions:* The initial 
assumption was that if the symmetry point group of 
the STNV molecule was icosahedral, then only peaks 
corresponding to two, three, and fivefold rotations 
would be allowed. Then when a set of strong peaks 
corresponding to rotations of the cubic point group 
were found, the assumption that these peaks con- 
tradicted the possibility of a icosahedral symmetry 
point group of the STNV molecule. As we have shown 
above, in addition to peaks of the rotation function 
corresponding to rotations of the icosahedral point 
group, one anticipates additional peaks, and among 
these additional peaks is a set corresponding to rota- 
tions of the cubic point group O (432). Further, using 
the same considerations concerning relative peak 
heights as formulated in the previous section, one also 
anticipates strong peaks corresponding to the cubic 
rotations. In the set of 240 rotations derived above, 
each of the cubic rotations appears twice while all 
other rotations appear only once. Consequently, the 
peak height of any peak corresponding to a cubic 
rotation, excluding the crystallographic twofold rota- 
tion about the b axis, is twice the height of any peak 
corresponding to a rotation not in this cubic point 
group. This fact has been confirmed by Akervall et al. 
(1971b). (However, we note that in a recent rotation 
function study of crystalline STNV, Lentz & Strand- 
berg (1974) found 'no obvious correlation of peak 
height with the symmetry type of axis'.) 

Klug (1971) and Akervall et al. (1971b) reinter- 
preted the Akervall et al. (1971a) data to indicate a 
icosahedral symmetry point group of the STNV molec- 
ules, and explained the strong rotation function peaks 
corresponding to the point group O (432) as being due 
to rotations which relate the orientations of the two 
icosahedral STNV molecules in the primitive unit cell 
of the molecular crystal. However, this reinterpretation 
is based on an argument which approximates the 
STNV molecular crystal as being of cubic space-gr0up 
symmetry, in particular, as being a crystal of space- 
group symmetry F = 06 (P4a32). Moreover, it was con- 
cluded that the analysis could have been carried out in 
a 'logical' order by starting from the point that the 
rotation function data indicated the 'approximate'  
crystal class O (432) of the STNV molecular crystal. 

* It has been pointed out by one of the referees of this paper 
that with the present knowledge of data collection and com- 
putational procedures (data cut-off limits) (see Lentz & Strand- 
berg, 1974) this misinterpretation of the rotation function data 
of STNV could have been avoided. 

While we have shown that the peaks corresponding to 
the cubic rotations are related to rotations which 
either leave a molecule invariant or rotate the orienta- 
tion of one molecule into the orientation of the other 
molecule in the primitive unit cell of the molecule crys- 
tal, at no point is the crystallographic symmetry of the 
STNV molecular crystal approximated by a cubic 
space group. Such an approximation procedure is not 
necessary and in this case is incorrect as it has been 
shown that the cubic peaks are due to the relative 
orientation of the two STNV molecules in the primi- 
tive unit cell of a molecular crystal of monoclinic 
space-group symmetry. 
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